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SUMMARY 
I 

A n  investigation was conducted t o  determine if cer ta in  combinations 
of design nozzle-exit  velocity  distribution and w a l l  contouring, employed 
t o  increase annulus area, can alter  the  three-dimensional flow character- 
i s t i c s  such that nozzle mass f l o w  cannot be predictedby  ordinary two- 
dimensional design techniques. Four nozzle  configurations with different  
wall contours and velocity  distributions were analyzed in the  axial-radial  
plane  (axial symmetry wag assumed) t o  determine the effect of the three- 
dimensional flow characterist ic8 on the maximum mass flow. The accuracy 
of the method of analysis w a s  established by comparing the maximm mass 
flow obtained by analysis with the r n a x i m m  obtainea experimentally. 
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The results of the analysis  indicated that two-dimensional  design 

techniques w e r e  inadequate for  use in  predicting mass f l o w  for   the nozzle 
configuration  designed f o r  a nontwisted ro tor  and having a convex inswept 
inner wall. It w a s  therefore concluded that cer tain combinations of 
nozzle-exit  velocity  distribution and wall corltouring employed t o  vaxy 
annulm area can a l t e r  the three-dimensional flaw character is t ics   to  a 
point where two-dimensional. design  techniqpes are inadequate for predict- 
ing ~ B S  flow. Consideration of the three-dimensional f l o w  characteris- 
t i c s  must therefore  be  included in the design of nozzles t o  insure sa t i s -  
factory  turbine performance. 

INTRODUCTION 

The increased  capabilities of compressors in  developing high pres- 
sure ratios and passing hL@ specific mass flows and the  resul t ing 
increase in the  severity of turbine  requirements  indicate that single  or 
multistage turbines designed to  power these co~~pressors  may i n  many 
instances employ nozzles  within which there is a divergence of Etnnulus 
mea. 

I Present-day turbines are  usually designed on a  two-dimensional basis. 
However, if a substantial  divergence in  annulus area Fn the nozzles is 
required, it becomes questionable  as t o  whether or  not  the  nozzle mass - 



2 NACA RM E53314 

flow and the exit   velocity  distribution resulting from equilibrium 
requirements can be predicted  by the conventional two-dimensional design 
procedures i n  which simple radial equilibrium i s  assumed a t  the entrance 
and exi t .  If the nozzles were to   pass  more than  design mss flow, the 
turbine might reach limiting loading before desi& specific wark could 
be obtained. If the nozzles were t o  pass less than design mass flow, 
the point ofrmaximum turbine  df ic iency might be moved t o  a relat ively 
unimportant position on the performance map. Also, t h i s  condition  could 
cause  mismatching between the compressor and the turbine i n  a turbo jet 
engine  and- m i g h t  force the compressor operation  into the surge  region. 
I n  either case,  the  velocity  distribution might be  considerably  dif'ferent 
from design,  thus  introducing poor angles of incidence and addi t iona l  
losses. . .  

A mass-flow problem o p t h i s  type occurred i n  the investigation of a 
turbine  rotor  uti l izing a diverging  annulus  area  designed on a two- 
dinaensional basis  (ref. 1). A three-dimenaional  analysis  of the flow 
through this turbhe rotor   ( ref .  2 )  indicated.that the r o t w  would not 
pass the design mass flaw. This was confirmed by the performance of 
this turbine as reported In  reference 1. The results o f  the three- 
dimensional analysis  applied  to  another  turbine  rotor  .designed f o r  the 
same application  indicated that design mass flow could he passed, and 
this was experinentally  verified (ref. 3). Thus, it w-as concluded t h a t  
the method of analysis (ref. 2 )  although  approximate is  adequate i n  
determining the mass flow characterist ics of turbine  rotors. 

The purpose of this investigation was  t o  determine if certain com- 
binations of nozzle-exit-velocity  distribution and w a l l  contouring  can 
alter the three-dimensional'flow characterist ics such that the  nozzle 
mass-flow cannot be predicted  by two-dimensional design  techniqges. As 
mentioned previously,  the  effect of the three-dimensional flow character- 
i s t i c s  on the actual  velocity  ilistribution at the nozzle  exit can also  be 
important, as variations from design can introduce losses dm t o  poor 
angles of incidence. However, t h i s  investigation is  res t r ic ted  t o  the 
mass-flow study. Two nozzles  having  inswept  inner -116, one designed 
for  free-vortex flow and one designed f o r  a n0ntwiste.d rotor, were inves- 
t igated by the ana ly t i ca l  method of reference 2, as well as experimen- 
t a l l y ,   t o  determine their maximum mass flow. The design exit   velocity 
dis t r ibut ion  for  a nozzle  designed for a nontwisted rotor has the  charac- 
t e r i s t i c  of the product of the tangentiai component of' velocity and wheel 
speed increasing from h& t o  t i p  as compared w i t h  a constant  value for 
free-vortex  designs. This ir.crease results i n  an i n v d  shift of mas8 
flow as compared w i t h  an outward shift   for  free-vortex designs. For 
comparative  purposes, two other  nozzle  configurations with cylindrical  
w a l l s ,  one a free-vortex  design and the  other  deslgned  for a nontwisted 
rotor, were also Investigated. The accuracy of the  analytical  method 
will be shown by comparing the results of the analytical  investigation 
w i t h  experimental results. 
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SYMBOLS 

The following synibols are used in   thi6  report  : 

velocity of sound at a Mach number of unity 

constant 

radius, in. 
tip  radius ,  in. 
blade  velocity,  ft/sec 

tangentid  velocity,   Pt/sec 

ax ia l   vehc t ty ,   f t / sec  

aensity,  lb/cu f t  

SuJ?erscript: 

- I t o t a l  state 

DESCRIFTION OF NOZZLES INVESTIGATED 

The four  nozzle  configurations  Investigated  herein d l l b e  desig- 
nated A, B, C, and D. The following  table summarizes the 
characterist ics of each nozzle: 

Des" Wall configuration Type  of velocity 
nation distribution 

A Cylindrical  outer wall Free-vortex design . 

w,, constant Convex insweep of 
inner wall 

B Cylindrical  outer w a l l  Nontwisted-rotor design 
Wu, increasing from hub Convex insweqp of 
t o   t i p  inner w a l l  

C Cylindrical inner and Free-vortex  design 

outer walls Wu, increasing from h* 
Cylindrical  inner and Nontwisted-rotor  design . D 

outer walls Wu, constant 

t o   t i p  

-L 

important 

Inlet 

radius radius 

Outlet 

r a t i o  r a t i o  

h a -  h a -  

I 
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The design  procedure for  nozzle .A i s  presented  in  reference 3 and a 
sketch of the blade sections i s  sham i n  figure l (a) .  Nozzle B w a s  
designed for  the same application as nozzle A but w i t h  norrtwieted-rot= 
velocity diagrams (see ref. 4 ) .  The method of obtainug the blade shapes 
was the same as that used fo r  nozzle A. The blade sections  for  nozzle B 
are shown in   f igure l ( b ) .  Nozzle C was a nozzle blade from a commercial 
j e t  engine, and nozzle D w&s designed fo r  the turbine reported in refer- 
ence 5.  The blase shapes of these two nozzles  are shown i n  figures 1(c) 
and l ( d )  , respectively. 

. ." 

8 
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METHOD OF ANALYSIS 

43 m 
03 cu 

A n  analysis of each nozzle  configuration was made using the method 
presented in  reference 2, which takm into account  three-dimensional f l o w  
e f fec ts ,   to  determine the maximum ma6s flow that could be passed. The 
primary assunrptions made in   the  analysis are: 

(a) Isentropic  flow L 

(b)  Axially symmetric flow m 

(c) Flow follows  blade mean  c-er surface - 
The equations  presented i n  reference 2 .me va l id   for   e i ther  a rotat ing 
or a stationary  blade row. . In the  analysis of the  four  nozzle  configura- 
tions, the wheel-speed  terms w e r e  merely set equal  to  zero. 

The streamline  estimate was  made for  a given  nozzle; the design 
mass-flow distribution upstream and downstream of the nozzle w a s  used t o  
divide the mass flow into equal parts and to fair streamlines between 
corresponding  points.  In a complete analysis, the streamline configurs- 
t ion would be modiffed i n  an iteration  process  to  maintain  continuity 
between streamlines. However, i n  the analysis of the nozzles, only  the 
original  streamline  .assumption was used, because the maximum mass flow 
obtained in   the  f irst  trial solution is  sufficiently  accmate (ref. 2) .  
The estimated  streamlines and the  resultant choking orthogonal  (orthog- 
onal  that limits the mass flow) for  the four  nozzles  are shown in   f i g -  
ure 2. 

APPARATUS AND INSTRUMENTATION 

The apparatus and instrumentation used i n  the investigation of 
nozzles A and B are  the same as described in references 1 or 3 except 
that the  turbine  rotor assembly w a s  replaced by a wood fairing  piece 
w h i c h  was contoured  approximately the same as the rotor hub. The experi- 
mental setup used t o  investiga-knozzles C and D is  described i n  7. 
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reference 5. The performance of nozzles C and D w a s  obtained  fromthe 
m e r - a l l  turbine Investigations, the r e su l t s  of which indicated that 

I both  nozzles were choked a t  the  turbine-design  operating  conditions. 

The accuracy of the measured mass flow is estimated to  be  within 
a. 01. 

N RESULTS AND DISCUSSION 
(2, co 
oc1 The four nozzle  configurations were analyzed t o  determine the effect  

of the  design  exit   velocity  distribution and wall contouring on the noz- 
z le  mass-flow characterist ics.  Before the  resul ts  of the analysis are 
discussed, the accuracy of the method of analysis w i l l  be  demonstrated 
by a comparison of the maximum m a s s  flaw obtained  analyticdly wtth that 
obtained  experimentally. 

Comparison of Analytical and krperimental Valuss of Mass Flaw 

1 The experhentally  obtained values of maximum mass flow and the 
d u e s  of  maximum mass flow computed from the  analysis for the four noz- 
d e s   a r e  compared i n  column 1 of table I. The r a t i o s  of the maximum mass 
flows  can be considered flow coefficients,  as  isentropic flow w i t h  no 
boundary-layer e f fec ts  is asswned in the analysis. When a flow coeffi- 
cient of 0.97 (which  can be considered a representative value for tur- 
bine nozzles) is applied to the analytically  obtained  value of mximum 
mass flow,  the  experimental maximum mass flow can be  predicted t o  withfn 
1 percent . Thus, the  analytical  method gave re l iab le  values of maximum 
mass flow f o r  the nozzles with contoured inner  wall^ as well as for the 
nozzles w i t h  straight cylindri'cal walls. 

- 

Results of Analysis 

Nozzle A. - The streamline assmption and the choking  orthogonal 
used in  the  analysis of nozzle A is sham fn figure 2(a). The ef fec t  of 
the insweep of the inner w & U  w a s  found t o  off  set   the outward s h i f t  in 
mass flow (character is t ic  of free-vortex design) such that the choking 
orthogonal was positioned  very  close  to the t r a i l i n g  edge over mst of 
the  blade span. The results of the analysis including  the 0.97 flow 
coefficient  indicated that a maxlrmnn of 103 gercent  design mass flow 
could be passed f o r  nozzle A (column 2, table I). A t  design  total-to- 
s ta t ic   pressure  ra t io   across  the nozzles,  design mass flow was passed 
(column 3, table I) as this nozzle w a s  designed t o  operate at s l i gh t ly  
less   than choking flow. - 
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There are two reasons why the two-dimensional design  technique w88 
sufficient as far as obtaining  design mass f l o w  fo r  t h i s  nozzle i s  con- 
cerned : ." 

(a) The three-dimensional choking orthogonal was  located  close  to 
the trailing edge over most  of .the blade span, being inside the passage 
only  near the inner w a l l .  Thus, the three-diimensional flaw =ea 
approached the two-dimensional design area closely. 

(b) Nozzle A w a s  designed t o  pass the greatest specific mass flow 
near the t i p  as indicated  in figure 3 which is based on the design  radial 
variation of specific mass flow at  the nozzle ex i t . .  The area under the- 
curve i s  proportionalto  the  nozzle mass flaw. Because the ineffkctive 
flow area occurred at the inner w a l l  where the nozzle was designed .t;o- 
pass the least specific mass flow, the effect  of the decreased  flow  area 
on the mass flow w a s  smal l .  

Nozzle B. - The streamline assumption and the resultant choking 
orthogonal  for  nozzle B are shown i n  figure 2(b) .  The ef fec t  of the 
inmeep of the inner w a i l  is seen t o  conibine with the inward sh i f t  of 
mass flow (characterist ic of nozzles  designed fo r  nontwisted rotor)  
such that"the choking orthogonal shifted considerably  inside the nozzle 
over most of-the blade span. The resu l t s  of the analysis  including  the 
0.97 flow  coefficient  indicated that the maximum mass flow of on ly  
96 percent  design  could  be  passed  (colpuy 2>.. table I). This nozzle was  
a lso designed t o  operate below the choking condition at the dea ign  t o t a l -  
to-s ta t ic   pressure  ra t io ,  and it w a s  found exprimentally that only 
94 percent-  design mass fluw was passed (colunm 3, table I). 

The maximum mass flow was  also  calculated  using %he two-dimensional 
design  throat area; choking a h 1 1  r a d i i  and..the 0,.97 f law coefficient . 

were assumed. The resu l t s  of' this calculation  indicased a maximum mas8 
flow of 101 percent design. A comparison between this resulkand the 
r e su l t  of the three-dimensional analyeria illustrates the effect of the 
three-dimensional flow characterist ics on the nozzle maximwn mass flow. 

There are two reasons why the two-dimensional design technique was 
not  satisfactory as fkr as predicting  design mass flaw is concerned: 

(a) The position of the choking orthogonal  caused by the  inner-wall 
contour and the inward shift of mass flow caused the three-dimensional 
flow area t o  be considerably  lees than the  two-dimnsional  design flow 
mea. 

(b) Nozzle B waS designed t o  pass  the  greatest.  specific mass flow 
near  the inner w a l l  (see  fig. 3) ; hence, the loss  i n  flow area at the 
inner w a l l  represented a considerable lOS6 i n  mass flow from design. 

Nozzles C and D. - The streamline assllmptions and the  resultant 
choking orthogonals f o r  nozzles C and D are shown in  f igures  2(c) and 
2(d). It can be  seen that the choking o r t h o g o d   f o r  nozzle D did not - 

F 
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l i e  at the   t ra i l ing  edge but i m i d e  the blade over the  ent i re  span. The 
location of the  choking orthogonal can be a t t r ibu ted   t o  the f a c t  that the 

of the man camber angle decreased;  as a r e m l t ,  flow area wag minimum 
inside the blade paesage ( f ig .  Z(d)) .  The reeul ts  of the analysis 
including  the 0.97 flow coefficient  indicated 99 and 101 percent deet- 
mass flow could be passed for nozzles C asd D, respectively, (column 2, 
table  I). Thus, the maxinun mass flow of approximately  design is  pre- 
dicted f o r  both nozzles. 

d blade thiclmess  increased fram the t r a i l i n g  edge faster than  the  cosine 

Discussion 

The analyt ical  results presented  herein, which were verified  by 
experimental  findings, Eave indicated  that ,   for  certain types of nozzles 
which  employ an increasing annulus area from  entrance t o  exit, a comen- 
t iona l  two-dimensional  design technique may be *&equate with respect 
to  obtaining  design mass flow. A conqarison of the results  obtained with 
the  four  nozzles shows that the velocity  distribution as well as the 
inner w a l l  curvature  contributes t o  the three-dimensional choking effect .  
For a wheel-type nozzle (Vu = Krl) with the eame type of inner w a l l  CUT- 

vature as nozzles A and B, the mass flow  deficiency  should  be greater 
than  that  obtained  for the nontwisted-rotor  design,  because  the radial 
inward shift  of mass flow would be greater. In  this case,  the mass flow 
of the nozzle  could  not be predicted by two-dbensional  techniques 
because the convex inswept inner wall and the radial b w a r d  sh i f t  of 
the mass f low would cause the choking orthogonal t o  occur well  within 
the nozzle  passage at the  inner wall, thereby  reducing  the  effective flow 
area. 

This same e f f e c t   c o d a  occur for a vortex-design  nozzle (v, = ~ - 1 )  
o r  a super-vortex  design (Vu = m-2) that employed a cylindrical  inner 
xall and a convex outswept outer w a l l .  The coribination of the w-all cur- 
vature and the radial outward sh i f t  of mass flow might cause the choking 
orthogonal t o  occur  within the nozzle  passage a t  the  outer w a l l  and 
reduce the  effective flow area. 

The analyt ical  and experimental results  obtained w i t h  nozzles C 
and D can be compared t o  show the ef fec t  of radial mass-flm shift  for  
cylindrical-walled  nozzles. From these resu l t s ,  it would appear that, 
regardless of the type of veloci ty   dis t r ibut ion employed and the result- 
ing radial mass-fhw shift,  conventional  two-dimnsional  design  tech- 
niques  should be adequate  with  respect to  predicting  the mass flow f o r  
cylindrical-walled  nozzles. -. 

It must be remenibered that the ana,l*ical  method described  herein is 
-1 useful only  in obtaining the maxim mass flow. If the nozzles are 

designed t o  choke, the  analytical  value of maximum  mas^ f low corrected 
for  the 0.97 coefficient can be compared directly with the design mass 
f low t o  deterrnine  whether or  not  the  nozzles will perform sa t i s fac tor i ly  - 
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as far as mass flow i s  concerned. If the nozzles are not designed t o  
choke, the analytical  results can be used only as a guide i n  determining 
if large  deviations  in mass flow from design  will-occur. 

SUMMARY OF RESULTS 

Fsur turbine nozzle  configurations were investigated  by three- 
dimnsional  analysis and experFmentallg t o  determine if certain combina- 
t ions of design  nozzle-exit  velocity  distribution-and w a l l  contouring 
can a l te r   the  three-dimensional  flow characterist ics such that the mass 
flow cannot be predicted  by two-dimensional  design  procedures. The 
result8 can be swmnarized as follows: 

1. Two-dimensional design  techniques were found t o  be satisfactory 
for the free-vortex  design w i t h  the convex inswept inner wall as far  as 
mass flow is  concerned. The three-dimensional  analysis  indicated that 
the outward shift of the mass flow  balanced the effect  of the insweep of 
the inner w a l l  such that the choking orthogonal occurred very close t o  
the   t ra i l ing  edge over most of tihe blade $pan. 

2. Two-dimensional design  techniques were found t o  be unsatisfactory 
for  predicting the mass flow of a nozzle  designed for  a nontwisted  rotor 
w i t h  a convex *wept-inner wall. This f ac t cou ld  be a t t r ibu ted   to  the 
conibination of the inward sh i f t  of the mass flow and the   e f fec t  of the 
insweep of the inner wall. The choking orthogonal w a s  located-consider- 
ably upstream of the t r a i l i ng  edge of the blade; thus, the mass flow wa8 
considerably less than that predicted by two-dimensior@- .techniques. 

3. Two-dimensional design  techniques were found t-o be adequate with 
respect to   predict ing  the mass flow fo r  both  the  free-vortex and the 
nontwisted-rotor  nozzles with cylindrical walls, although the choking 
orthogonal fo r  the nontwisted-rotor design was found in   the  analysis   to  
l ie   within  the nozzle  passage. 

4. The maxirmun mass f l6ws obtained  by analysis including a flow 
coefficient of 0.97 were within 1 percent of the experimentfly  obtained 
maxirmrm mass flows fo r  all four nozzles. 

CONCLUSION 

From the  experimental and analytical  results presented  herein, it 
can be concluded tha t  certain  co&inations of design  nozzle-exit  veloc- 
i ty   d i s t r ibu t ion  and wall contouring, employed to  vary the annulus area, 
can alter the three-dimensional flow character is t ics   to  a point where 

8? 
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two-dimensional  techniques are inadequate for  predicting mass flaw. 
Consideration of the three-dimensional f low characterist ics must there- 

perf ormasce. 
d fore  be  included in the design of nozzles t o  insure satisfactory  turbine 
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TABLE I. - COMPARISON OF DESIGN, EXPERIMENTAL, AND ANALYTICAL 

MAJ5S-FLOW VALUES 

Nozzle Mass flow at Ratio of maximum Ratio of maximum 
mass f low obtalned 

percent design f i c i e n t   t o  design obtained  by  analysis 

to-s ta t ic  by  analysis includ- experimentally t o  
design t o t a l -  mass flow obtained 

maxfmum mass f l o w  pressure ra t io ,  ing 0.97 flow coef-. 

mass flow 

A 

100 1.01 .97 D . .  

100 .99 .98 C 
94 .96 .96 " 3 
100 1.03 0.97 

" 

. .  

c 



NACA RM E53El4 

Hub, r/rt = 0.68 

Mean, r/rt = 0.84 

Tip, r/rt = 1.00 

(a) Nozzle A. 

Figure 1. - Nozzle-blade passages and shapes. 
-" 



Hub, r/rt = 0.67 x/rt = 0.78 

‘ I  I 

. .  . 

(a) Nozzle B. 

TIP, r/rt = 1.00 

I 

8682 
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Hub, r/rt = 0.70 

Mean, r/rt = 0.85 

Tip, r/rt = 1.00 

(c) Nozzle C. w 
Figura 1. - Continued. Nozzle.-blade passage6 and shapes. 
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Hub, r/rt = 0.78 
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(a) Nozzle A. 

(b) Nozzle B. T 
Figure 2. - Side view of nozzles  showing  position of 

estimated  streamlines and resultant choking orthogonal. 
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(d) Nozzle D. -qgGJT7 
Figure 2. - Condluded. Side view of nozzles  sharing posLt&3n 

of estimated streamlines and resultant choking orthogonal. 
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Figure 3. - Radial mass-flow dietribution at nozzle exit  for 
nozzle A (free-vortex design) and nozzle B (nontwisted- 
rotor design). 




